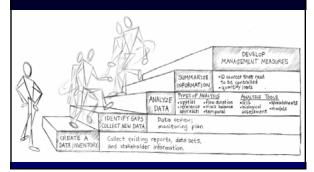


Watershed-Based Nonpoint Source Pollution Control Plans

- a. Identify stressors & sources to be controlled
- b. Estimate load reductions expected from BMPs
- c. Describe mgmt measures & targeted critical areas
- d. Estimate TA, \$\$, & source required for implementation
- e. Describe info & education needed to promote $\ensuremath{\mathsf{BMPs}}$
- f. Develop schedule for implementation of BMPs, assign tasks
- g. Describe interim, measurable milestones
- h. Identify criteria to measure progress
- i. Develop monitoring component


Source: US EPA 2004 319 Supplemental Guidelines

Estimating Pollutant Reductions

- Estimate pollutant inputs from watershed sources identified during assessment phase
- Identify target reductions needed to meet goals

Watershed analysis is on ongoing learning process – iterative & creative!

Reducing pollutant inputs: the basics

- Simple (linear) approach

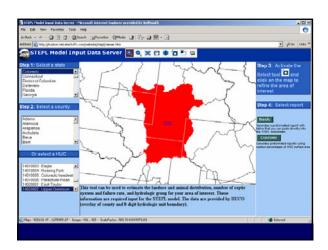
 Use observed data
- Empirical relationships
- Reduce the concentration
 Reduce the source area
 Reduce # of sources
- Complex (modeled) approach
 Model the loadings
 Model BMP reductions

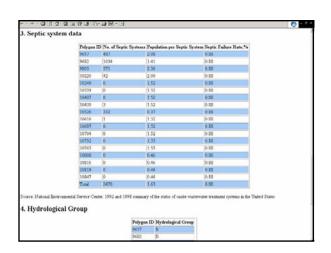
 - Layers can include topography, soils, climate, land use, land cover, pollutant transport/fate, point sources, management practices, etc.

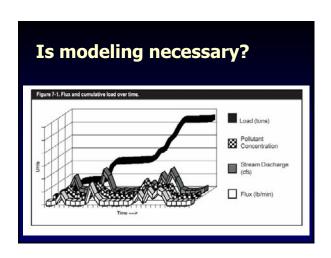
Description of the NPS management measures needed

- Management measures or BMPs should be linked to (or otherwise address) <u>stressors</u> and <u>sources</u>
 - Estimates for pollutant removal rates or general effectiveness should be included
 - Can be based on typical ranges, i.e., percentage removed/treated, reasonable estimates, etc.
- Specify or map areas where BMPs will be used or installed
 - Examples: all abandoned mine sites with dry weather flows; all streambanks along upper reaches; livestock facilities on Willow Run; etc.

http://www.epa.gov/owow/nps/agmm/index.html Table 4d-d. Relative gross effectiveness* (load reduction) of animal feeding operation control measures (Ponnsylvanis State University, 1992b). Practice* Runoff Total* Phosphorus (No) Nitrogen Sectiment Coliform Chi Systems* Category Rounoff Total* Phosphorus (No) Nitrogen Sectiment Coliform Chi Systems* Diversion Systems* reduced 90 80 60 85 Filter Sirios* reduced 70 45 NA NA NA Filter Sirios* reduced 85 NA 60 55 Terrace System reduced 85 NA 60 55 Terrace System reduced 85 55 80 NA Containment reduced 85 55 80 NA Containment reduced 85 55 80 NA Containment reduced 80 65 70 90 NA root amaldée. **NA root amaldée. **A roo




Sample BMP effectiveness table


nun.	Percent Efficiency					
вмр —	TSS	Total Nitrogen	Total Phosphorus	Fecal Coliform		
Wet pond	854	33*	51*	70*		
Dry detention	47*	25*	19*	78*		
Stormwater wetland	76ª	30*	49*	78*		
Sand filter	87°	32*	59°	37*		
Bioretention	874	57 tah	76 tahi	90 k		
Enhancedg Grass swale	93 °	92 *	83*	- 25°		
Grass swale	68°	20"	29°	5*		
Infiltration trench	95*	51*	70*	90*		
25-ft forest buffer	57 ^{8,4}	27 to	34 %**	5*		
50-ft forest buffer	62 h.e	31 hr	38 64	5*		
75-ft forest buffer	65 b.c	33 h.c	41 ^{6,6}	5*		
100-ft forest buffer	67**	34 **	43 ***	5*		
200-ft forest buffer	72 h.c	38**	47 h.c	5*		

Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd ed. Center for Watershed Protection, Ellicott City, MD.

Types of Models

- STEPL (excel spreadsheet with a BMP calculator)
- AGNPS (USDA model that predicts nitrogen, phosphorus, and organic carbon)
 - Training info. at www.sedlab.olemiss.edu/agnps.html
- GWLF (Generalized Watershed Loading Function; Simulates runoff and sed. delivery; Good choice for nutrients and sediment)
- HSPF (Hydrologic Simulation Program-Fortran; requires extensive calibration and high level of expertise; simulates hydrology)

Key Decisions in Choosing a Model

- Spatial resolution
 - Watershed, subwatershed, tributary, region, critical areas?
- Time scale
 - Average annual, annual, seasonal, storm, monthly?
- Land use
 - General (ag, urban, etc.)
 - Specific (cropland, pasture land, residential, commercial)
- Pollutant type

Set Goals and Identify Load Reductions

- Refine "big picture goals" set in the assessment phase
 - Restore aquatic habitat in Turtle Creek watershed
 - Meet water quality standards for bacteria
- Translate into Specific Management Objectives
 - Restore aquatic habitat in the upper main stem of Turtle Creek by controlling agricultural sources of sediment
 - Reduce bacteria loads from livestock operations

Selecting Indicators/Targets

- Measurable parameters to link pollutant sources to environmental conditions
 - Peak flow
 - Nutrient concentration
 - Temperature
- Specific numeric value set as target for each
 - Based on water quality criteria, reference conditions, etc.

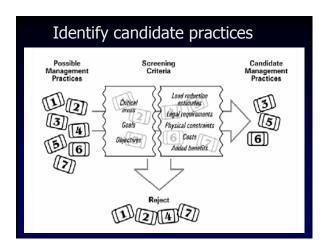
Issue	Suite of Indicators		
Eutrophication	• P load		
	• # of nuisance algae blooms		
	Transparency		
	Frequency of taste and odor problems in water supply		
	Hypolimnetic DO in a lake/reservoir		
	Soil test P in agricultural fields		
Pathogens (related to recreational use)	Bacteria counts		
	Compliance with WQS (single sample or geometric mean)		
	• # and duration of beach closings		
	• # of shellfish bed reopenings		
	 Incidence of illness reported during recreation season 		
Sediment	TSS concentration and load		
	Raw water quality at drinking water intake		
	Frequency and degree of dredging of agricultural ditches, impoundments, water supply intake structures		

Considerations for identifying management strategies (BMPs)

- Satisfies element "c"
 - Describe NPS <u>mgmt measures</u> & targeted <u>critical areas</u>
- Structural Controls
 - Riparian buffers, grassed waterway, riprap
 - Alternative water devices for cattle
- Nonstructural Controls
 - Erosion control plans
 - Public education
 - Nutrient management plans
 - Prescribed grazing

Proposed management measures

- · Pollutant reductions desired


 - Estimate or quantifyMetrics selected should make sense!
- BMP types proposed
 What will lessen your inputs?
 Applicable to your situation?
- Reductions from BMPs
 - How can you measure BMP impacts?
 Use literature or actual values
- BMP installation sites

 - Which sites will hit the source(s)?Are there critical areas to focus on?

Selecting the most appropriate BMPs

- · Look at what's worked and what hasn't
 - Research effectiveness
 - Consider costs/benefits
 - Property ownership/site access
- Look for added benefits
- Use a combination of techniques
- Focus efforts on critical areas; use more or better BMPs there
- Be creative

Prioritizing/targeting BMPs

- Importance of waterbody

 Drinking water source, recreational resource
- Magnitude of impairment(s)
 Level of effort needed; public interest/attention
 Existing inputs (stressors/sources)
 Magnitude, spatial variation, dustering
- Ability of BMPs to reduce inputs
 Sure thing, or a shot in the dark?
 Feasibility of implementation
 Willing partners? Public support?

- Additional benefits
 Recreational enhancements, demonstration

The Bottom Line from US EPA:

- Load reduction *estimates* are critical
- Preliminary info & estimates can be modified & corrected over time, if necessary
- Reasonable management measures can & should proceed even if planning info is not complete

